Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 664: 1012-1020, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38508029

RESUMO

The development of cost-effective, high-activity and stable catalysts to accelerate the sluggish kinetics of cathodic oxygen reduction/evolution reactions (ORR/OER) plays a critical part in commercialization application of rechargeable Zn-air batteries (RZABs). Herein, a multiscale nanoengineering strategy is developed to simultaneously stabilize Co-doped Fe nanoparticles originated from metal-organic framework-derived approach and atomic Fe/Co sites derived from metal nanoparticle-atomized way on N-doped hierarchically tubular porous carbon substrate. Thereinto, metal nanoparticles and single atoms are respectively used to expedite the OER and ORR. Consequently, the final material is acted as an oxygen electrode catalyst, displaying 0.684 V of OER/ORR potential gap, 260 mW cm-2 of peak power density for liquid-state RZAB, 110 mW cm-2 of peak power density for solid-state RZAB, and 1000 charge-discharge cycles without decay, which confirms great potential for energy storage and conversion applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...